10 research outputs found

    First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam

    Get PDF
    Based on the notion that the local dark-matter field of axions or axion-like particles (ALPs) in our Galaxy induces oscillating couplings to the spins of nucleons and nuclei (via the electric dipole moment of the latter and/or the paramagnetic axion-wind effect), we performed the first experiment to search for ALPs using a storage ring. For that purpose, we used an in-plane polarized deuteron beam stored at the Cooler Synchrotron COSY, scanning momenta near 970 MeV/c. This entailed a scan of the spin precession frequency. At resonance between the spin precession frequency of deuterons and the ALP-induced EDM oscillation frequency there will be an accumulation of the polarization component out of the ring plane. Since the axion frequency is unknown, the momentum of the beam and consequently the spin precession frequency were ramped to search for a vertical polarization change that would occur when the resonance is crossed. At COSY, four beam bunches with different polarization directions were used to make sure that no resonance was missed because of the unknown relative phase between the polarization precession and the axion/ALP field. A frequency window of 1.5-kHz width around the spin precession frequency of 121 kHz was scanned. We describe the experimental procedure and a test of the methodology with the help of a radiofrequency Wien filter located on the COSY ring. No ALP resonance was observed. As a consequence an upper limit of the oscillating EDM component of the deuteron as well as its axion coupling constants are provided.Comment: 25 pages, 24 figures, 7 tables, 67 reference

    [Szenen aus Faust] / A. Kreling. Trambauer sc. v. Walla. R. Brend'amour. M. Weber sc. H. Kaeseberg. W. Hecht sc. R. Schlumprecht sc. Knesing sc. C. Linsenmaier sc.

    No full text
    [SZENEN AUS FAUST] / A. KRELING. TRAMBAUER SC. V. WALLA. R. BREND'AMOUR. M. WEBER SC. H. KAESEBERG. W. HECHT SC. R. SCHLUMPRECHT SC. KNESING SC. C. LINSENMAIER SC. [Szenen aus Faust] / A. Kreling. Trambauer sc. v. Walla. R. Brend'amour. M. Weber sc. H. Kaeseberg. W. Hecht sc. R. Schlumprecht sc. Knesing sc. C. Linsenmaier sc. (1) Illustrationen zu Szenen aus Faust (1

    Feasibility Study for a storage ring to search for an Electric Dipole Moment of charged particles

    No full text
    The proposed method exploits charged particles confined as a storage ring beam (proton, deuteron, possibly 3He) to search for an intrinsic electric dipole moment (EDM) aligned along the particle spin axis. Statistical sensitivities can approach 102910^{29} e.cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization. The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring.The proposed method exploits charged particles confined as a storage ring beam (proton, deuteron, possibly helium-3) to search for an intrinsic electric dipole moment (EDM) aligned along the particle spin axis. Statistical sensitivities could approach 1029^{-29} e\cdotcm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarisation, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarisation. The slow rise in the vertical polarisation component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY (Cooler Synchrotron, Forschungszentrum J\"ulich) activities that demonstrate technical feasibility. Achievements to date include reduced polarisation measurement errors, long horizontal-plane polarisation lifetimes, and control of the polarisation direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring

    Feasibility Study for an EDM Storage Ring

    No full text
    This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly 3^3He) to search for an intrinsic electric dipole moment (EDM, d\vec d) aligned along the particle spin axis. Statistical sensitivities can approach 102910^{-29}e\cdotcm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization (d×E\vec d \times\vec E). The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring

    Storage Ring to Search for Electric Dipole Moments of Charged Particles -- Feasibility Study

    No full text
    The proposed method exploits charged particles confined as a storage ring beam (proton, deuteron, possibly helium-3) to search for an intrinsic electric dipole moment (EDM) aligned along the particle spin axis. Statistical sensitivities could approach 1029^{-29} e\cdotcm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarisation, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarisation. The slow rise in the vertical polarisation component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY (Cooler Synchrotron, Forschungszentrum J\'ulich) activities that demonstrate technical feasibility. Achievements to date include reduced polarisation measurement errors, long horizontal-plane polarisation lifetimes, and control of the polarisation direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring

    Storage Ring to Search for Electric Dipole Moments of Charged Particles -- Feasibility Study

    Get PDF
    The proposed method exploits charged particles confined as a storage ring beam (proton, deuteron, possibly helium-3) to search for an intrinsic electric dipole moment (EDM) aligned along the particle spin axis. Statistical sensitivities could approach 1029^{-29} e\cdotcm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarisation, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarisation. The slow rise in the vertical polarisation component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY (Cooler Synchrotron, Forschungszentrum J\'ulich) activities that demonstrate technical feasibility. Achievements to date include reduced polarisation measurement errors, long horizontal-plane polarisation lifetimes, and control of the polarisation direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring
    corecore